

Growth

Authors: Bill Davis, Horacio Porta and Jerry Uhl Producer: Bruce Carpenter

Publisher: Math Everywhere, Inc. Distributor & Translator: MathMonkeys, LLC

€

Table of Contents

PRINTED VOLUME 1: Modules 1.01 - 1.05

PRINTED VOLUME 2: Modules 1.06 - 1.09

PRINTED VOLUME 1: 1.01 - 1.05

- ₹ 1.01 Growth
 - **Basics**
 - \bigcirc B.1) Growth of line functions f(x) = a x + b
 - B.2) Growth of power functions $f(x) = a x^k$
 - B.3) Growth of exponential functions $f(x) = a e^{rx}$
 - **B.4)** Dominance in the global scale
 - **B.5)** Percentage growth rate and dominance in the global scale
 - **Tutorials**
 - T.1) Global scale
 - T.2) Linear models
 - **₹** T.3) Data analysis and compromise lines
 - T.4) Functions given by data lists: Interpolation and analysis
 - \bigcirc T.5) The trig functions $\sin(x)$ and $\cos(x)$
 - T.6) Another linear model: Drinking and driving

■ Give It a Try

- **G.1**) Line fundamentals
- **₹** G.2) Global scale
- **€** G.3) Linear models
- **G.4**) Compromise lines through data
- **₹** G.5) Green globs
- **₹** G.6) Percentage growth
- **Q** G.7) Functions given by data lists: Interpolation and analysis
- **€** G.8) Another linear model: Drinking and driving
- **€** G.9) Interpolation and approximation*
- **Literacy Sheet**

1.02 - Natural Logs and Exponentials **Basics** \bigcirc B.1) The natural base e and the natural logarithm **B.2)** Percentage growth of exponential functions: Doubling time and half life **B.3**) Unnatural bases Tutorials **T.1)** Exponential models **T.2)** Exponential data T.3) e and Finance **■** Give It a Trv **G.1**) Exponential growth **₹** G.2) Steady growth versus steady percentage growth **G.3**) Exponential models **G.4**) Exponential data analysis **G.5)** Your money **G.6)** Compounding every instant **₹** G.7) Law and order **₹** G.8) Unnatural bases **Q.9)** Reflecting patterns and wandering points **Literacy Sheet** 1.03 - Instantaneous Growth Rates **Basics B.1**) Instantaneous growth rates **B.2**) Instantaneous growth rate of x^k is measured by $k x^{k-1}$ **⊕** B.3) The instantaneous growth rate of sin(x) is measured by cos(x). The instantaneous growth rate of cos(x) is measured by -sin(x). **B.4**) The instantaneous growth rate of ln(x) is measured by $\frac{1}{x}$. The instantaneous growth rate of e^{x} is measured by e^{x} . This is why ln(x) is called the natural logarithm, and why *e* is the natural base for exponentials.

Tutorials

- $\ensuremath{\stackrel{\frown}{\otimes}}$ T.1) Average growth rate versus instantaneous growth rate
- \bigcirc T.2) Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- **T.3**) Spread of disease

- **T.4)** Instantaneous growth rates in context
- **€** Give It a Try
 - \bigcirc G.1) Relating f(x) and f'(x)
 - **Q** G.2) Explaining LiveMath output
 - **G.3**) Approximation of the instantaneous growth rate f(x) by average growth rates $\frac{f(x+h)-f(x)}{h}$
 - \bigcirc G.4) Using the instantaneous growth rate f (x) to predict the plot of f(x)
 - **G.5)** Graphics action
 - **Q.6)** Up and down, maximum and minimum
 - **G.7**) Spread of disease
 - **₹** G.8) Average growth rate versus instantaneous growth rate
 - **G.9)** Why folks study the instantaneous growth rate instead of instantaneous growth
- **Literacy Sheet**
- **₹ 1.04 Rules**
 - **Basics**
 - B.1) Derivatives, instantaneous growth rates, f'(x) and $\frac{d}{dx}(f(x))$
 - **B.2**) The chain rule:

$$\frac{d}{dx}(f(g(x))) = f'(g(x)) g'(x)$$

B.3) General rules for taking derivatives

$$\frac{d}{dx}(f(x)+g(x),x) = f'(x)+g'(x)$$

$$\frac{d}{dx}(c f(x),x) = c f'(x)$$

$$\frac{d}{dx}(f(x) g(x),x) = f'(x) g(x)+f(x) g'(x)$$

- **■** B.4) Using the logarithm to calculational advantage
- **B.5**) The instantaneous percentage growth rate of a positive function f(x) is $100 \frac{f'(x)}{f(x)}$
- **B.6)** Exponential growth dominates power growth and power growth dominates logarithmic growth
- **Tutorials**
 - **T.1) Practicing with the chain rule**
 - ₹ T.2) Practicing with the chain rule, the product rule, and the power rule
 - ₹ T.3) Linear dimension: length, area, volume and weight

€ Give It a Try

- **G.1)** Practicing with the chain rule
- **©** G.2) Practicing with the chain rule, the product rule, and the power rule
- **₹** G.3) Global scale
- **◎** G.4) Exponential functions and their constant percentage growth rate
- \bigcirc G.5) Relating the plots of f(x) and f'(x)
- \bigcirc G.6) $100\ln(f(x))$ and the instantaneous percentage growth rate
- G.7) Linear dimension: Length, area, volume, and weight
- **◯** G.8) Interest compounded every instant versus interest compounded every month

Literacy Sheet

1.05 - Using the Tools

Basics

- **B.1**) Using the derivative for finding maximum values and minimum values
- **B.2)** Using the derivative to help to get a good representative plot
- **ℚ** B.3) Using the derivative to fit data by curves: Line fit and Sine and Cosine wave fit

Tutorials

- **T.1)** Highest and lowest points on the graph
- **T.2)** Approximations by polynomials; Approximations by Sine and Cosine waves
- **₹** T.3) Fish gotta swim: The least energy
- **T.4)** Designing a box
- **₹** T.5) Largest and smallest

■ Give It a Trv

- **Q** G.1) Good representative plots
- **◯** G.2) Highest and lowest points on the graph
- **©** G.3) Approximations by polynomials and approximations by Sine and Cosine waves.
- **G.4**) Oil slicks
- \bigcirc G.5) The second derivative, f''(x)
- **©** G.6) Driving the big Mack trucks
- **②** G.7) The space shuttle Challenger and its O-rings
- **G.8**) Management analysis
- (a) Up then down for $\frac{x^t}{e^x}$
- **Q** G.10) Other max-min problems
- **₹** G.11) At what age is the Bernese Mountain Dog growing the fastest?

Literacy Sheet

- **₹ PRINTED VOLUME 2: 1.06 1.09**
- 1.06 The Differential Equations of Calculus
 - **Basics**
 - **■** B.1) The most important of all differential equations:

$$y'(x) = r y(x)$$

and why you already know how to solve it

◯ B.2) The logistic differential equation

$$y'(x) = r y(x) \left(1 - \frac{y(x)}{b}\right)$$

and how you get a formula for its solution

- **₹** B.3) Logistic growth is controlled growth
- **B.4)** The differential equation

$$y'(x) = r y(x) + b$$

and how to get a formula for its solution

- **Tutorials**
 - **₹** T.1) Radioactive decay and carbon dating
 - **T.2)** Socking money away
 - **₹** T.3) Wal-Mart: Exponential or logistic growth?
 - **T.4)** Pollution elimination
- **■** Give It a Try
 - **Quick calculations**
 - **Q** G.2) Data analysis
 - **©** G.3) Logistic growth versus exponential growth
 - **②** G.4) Why do they turn out this way?
 - **₹** G.5) Other differential equations
 - **G.6)** Managing your money
 - **◎** G.7) Which animals grow faster after their birth than they are growing at the time of their birth?
 - **©** G.8) Newton's law of cooling: How a differential equation can help you enjoy your favorite cooled beverage
 - **G.9)** Pressure altimeters
- **Literacy Sheet**
- 1.07 The Race Track Principle
 - **Basics**
 - **B.1)** The Race Track Principle
 - **B.2)** The Race Track Principle and differential equations
 - **B.3**) The Race Track Principle and Euler's method of faking the plot of the solution of a differential equation
 - **B.4)** Tangent lines and the Race Track Principle
 - **Tutorials**

- T.1) Using Euler's method to fake the plot of f(x) given f'(x) and one value of f(x)
- T.2) Using the Race Track Principle to help to estimate roundoff error
- T.3) If f ''(x) is always positive then tangent lines run below the curve

Give It a Try

- **©** G.1) Versions of the Race Track Principle
- **Q.2)** Running Euler's faker
- **■** G.3) The Race Track Principle and differential equations
- \bigcirc G.4) The error function Erf(x)
- **₹** G.5) Round off.
- \bigcirc G.6) Calculating accurate values of $\ln(x)$
- \bigcirc G.7) Calculating accurate values of e^{x}
- **G.8**) Euler's faker and the second derivative
- **G.9**) Inequalities
- **G.10**) The Law of the Mean
- \bigcirc G.11) If f''(x) is never positive then tangent lines run above the curve; At points of inflection, the tangent line crosses the curve

Literacy Sheet

₹ 1.08 - More Differential Equations

Basics

- **B.1)** Euler's faker and LiveMath's Runge-Kutta faker
- **⊗** B.2) Simultaneous differential equations: The predator-prey model

Tutorials

- **₹** T.1) Using a differential equation to analyze Bubba's toot
- **₹** T.2) Analysis of the predator-prey model

€ Give It a Try

- **G.1)** Variable interest rates
- **G.2**) Drinking and driving
- **②** G.3) Further analysis of the predator-prey model
- \bigcirc G.4) The drug equation
- **G.5**) War games
- **₹** G.6) Logistic harvesting
- \bigcirc G.7) The logistic predator-prey model
- **G.8**) Epidemics
- **₹** G.9) Hints of chaos

Literacy Sheet

₹ 1.09 - Parametric Plotting

Basics

- **B.1**) Parametric plots in two dimensions: Circular parameters
- **B.2**) Parametric plots of curves in three dimensions
- **B.3)** Parametric plots of surfaces in three dimensions
- **₹ B.4**) Derivatives for curves given parametrically: The cycloid

Tutorials

- **₹** T.1) Parametric plotting for projectile motion
- **₹** T.2) Parametric plotting for designing a cam
- **T.3**) Parametric plotting of the predator-prey model
- **T.4)** Quick calculations

€ Give It a Try

- **Quick calculations**
- **②** G.2) Parametric plotting of circles and ellipses in two dimensions
- **₹** G.3) Elliptical orbits of planets and asteroids
- **②** G.4) Parametric plotting of circles, tubes and horns in three dimensions
- **G.5)** Surfaces you can make by rotating curves
- **G.6)** Projectile marksmanship
- **₹** G.7) More cams
- **©** G.8) Parametric plotting of a predator-prey model in which the prey don't reproduce and the predators don't die
- **©** G.9) Politics and the environment
- **₹** G.10) Epidemics
- **₹** G.11) Collision?
- **Literacy Sheet**

₹ 1.10 - Holes, Jumps, and Asymptotes

Basics

- **B.1**) It's Broken
- **₹** B.2) "At" vs. "Approaching"
- **B.3**) Limits
- **B.4**) Continuity

Tutorials

- **T.1**) Limits
- **T.2**) Limit Rules
- **T.3**) Continuity

Give It a Try

- **Q** G.1) Limits
- **G.2**) More Limits
- **₹ G.3)** Continuity

Literacy Sheet